Recommended Reading

If there’s one thing I’ve done a lot of over the last few years, reading would be it. I’ve devoted a great deal of time to devouring any material that I thought might give me an edge in my trading – textbooks, academic papers, blog articles, training courses, lecture notes, conference presentations…anything and everything I could get …

Read more

Machine learning for Trading: Part 2

Introduction My first post on using machine learning for financial prediction took an in-depth look at various feature selection methods as a data pre-processing step in the quest to mine financial data for profitable patterns. I looked at various methods to identify predictive features including Maximal Information Coefficient (MIC), Recursive Feature Elimination (RFE), algorithms with …

Read more

My experience dealing with Zorro’s support team

Disclaimer: I am not posting this at the behest of the developers of Zorro, nor do I receive any form of payment or commission for this post. I felt that I should relay this experience because it was an example of customer service that went way above and beyond the call of duty in terms of …

Read more

Machine learning for Trading:
Adventures in Feature Selection

Updates: 2019: In this first Machine Learning for Trading post, we’ve added a section on feature selection using the Boruta package, equity curves of a simple trading system, and some Lite-C code that generates the training data.  2020: I’ve updated the original post with some new thinking about data-mining, refreshed the code, updated the data and …

Read more

Time Series Analysis: Fitting ARIMA/GARCH predictions profitable for FX?

Recently, I wrote about fitting mean-reversion time series analysis models to financial data and using the models’ predictions as the basis of a trading strategy. Continuing our exploration of time series modelling, let’s research the autoregressive and conditionally heteroskedastic family of time series models. In particular, we want to understand the autoregressive integrated moving average …

Read more

Exploring Mean Reversion and Cointegration: Part 2

In the first Mean Reversion and Cointegration post, I explored mean reversion of individual financial time series using techniques such as the Augmented Dickey-Fuller test, the Hurst exponent and the Ornstein-Uhlenbeck equation for a mean reverting stochastic process. I also presented a simple linear mean reversion strategy as a proof of concept. In this post, I’ll …

Read more

Exploring mean reversion and cointegration with Zorro and R: part 1

This series of posts is inspired by several chapters from Ernie Chan’s highly recommended book Algorithmic Trading. The book follows Ernie’s first contribution, Quantitative Trading, and focuses on testing and implementing a number of strategies that exploit measurable market inefficiencies. I’m a big fan of Ernie’s work and have used his material as inspiration for a great deal …

Read more

A framework for rapid and robust system development based on k-means clustering

Important preface: This post is in no way intended to showcase a particular trading strategy. It is purely to share and demonstrate the use of the framework I’ve put together to speed the research and development process for a particular type of trading strategy. Comments and critiques regarding the framework and the methodology used are most …

Read more

Unsupervised candlestick classification for fun and profit – part 2

In the last article, I described an application of the k-means clustering algorithm for classifying candlesticks based on the relative position of their open, high, low and close. This was a simple enough exercise, but now I tackle something more challenging: isolating information that is both useful and practical to real trading. I’ll initially try two …

Read more

Unsupervised candlestick classification for fun and profit – part 1

Candlestick patterns were used to trade the rice market in Japan back in the 1800’s. Steve Nison popularised the idea in the western world and claims that the technique, which is based on the premise that the appearance of certain patterns portend the future direction of the market, is applicable to modern financial markets. Today, …

Read more