activation function

Posted on Jan 23, 2018 by Kris Longmore
17 comments.
0 Views

This is the third in a multi-part series in which we explore and compare various deep learning tools and techniques for market forecasting using Keras and TensorFlow. In Part 1, we introduced Keras and discussed some of the major obstacles to using deep learning techniques in trading systems, including a warning about attempting to extract meaningful signals from historical market data. If you haven’t read that article, it is highly recommended that you do so before proceeding, as the context it provides is important. Read Part 1 here. Part 2 provides a walk-through of setting up Keras and Tensorflow for R using either the default CPU-based configuration, or the more complex and involved (but well worth it) GPU-based configuration under the Windows environment. Read Part 2 here. Part 3 is an introduction to the model building, training and evaluation process in Keras. We train a simple feed forward network to predict the direction of a foreign exchange market over a time horizon of hour and assess its performance. [thrive_leads id='4507'] . Now that you can train your deep learning models on a GPU, the fun can really start....

Posted on Sep 06, 2017 by Kris Longmore
6 comments.
0 Views

This article is adapted from one of the units of Advanced Algorithmic Trading. If you like what you see, check out the entire curriculum here. Find out what Robot Wealth is all about here. If you're interested in using artificial neural networks (ANNs) for algorithmic trading, but don't know where to start, then this article is for you. Normally if you want to learn about neural networks, you need to be reasonably well versed in matrix and vector operations - the world of linear algebra. This article is different. I've attempted to provide a starting point that doesn't involve any linear algebra and have deliberately left out all references to vectors and matrices. If you're not strong on linear algebra, but are curious about neural networks, then I think you'll enjoy this introduction. In addition, if you decide to take your study of neural networks further, when you do inevitably start using linear algebra, it will probably make a lot more sense as you'll have something of head start. The best place to start learning about neural networks is the...