Can you apply factors to
trade performance?

When tinkering with trading ideas, have you ever wondered whether a certain variable might be correlated with the success of the trade? For instance, maybe you wonder if your strategy tends to do better when volatility is high? In this case, you can get very binary feedback by, say, running backtests with and without a …

Read more

Momentum Is Dead! Long Live Momentum!

In our inaugural Algo Bootcamp, we teamed up with our super-active community of traders and developed a long-only, always-in-the-market strategy for harvesting risk premia. It holds a number of different ETFs, varying their relative weighting on a monthly basis. We’re happy with it. However, the perennial question remains: can we do better? As you might …

Read more

Demystifying the Hurst Exponent – Part 2

What if you had a tool that could help you decide when to apply mean reversion strategies and when to apply momentum to a particular time series? That’s the promise of the Hurst exponent, which helps characterise a time series as mean reverting, trending, or a random walk. For a brief introduction to Hurst, including …

Read more

How to Create a Trading Algorithm: So You Want to Build Your Own Algo Trading System?

This post comes to you from Dr Tom Starke, a good friend of Robot Wealth. Tom is a physicist, quant developer and experienced algo trader with keen interests in machine learning and quantum computing. I am thrilled that Tom is sharing his knowledge and expertise with the Robot Wealth community. Over to you, Tom. Unlike …

Read more

Exploring Mean Reversion and Cointegration: Part 2

In the first Mean Reversion and Cointegration post, I explored mean reversion of individual financial time series using techniques such as the Augmented Dickey-Fuller test, the Hurst exponent and the Ornstein-Uhlenbeck equation for a mean reverting stochastic process. I also presented a simple linear mean reversion strategy as a proof of concept. In this post, I’ll …

Read more

Unsupervised candlestick classification for fun and profit – part 2

In the last article, I described an application of the k-means clustering algorithm for classifying candlesticks based on the relative position of their open, high, low and close. This was a simple enough exercise, but now I tackle something more challenging: isolating information that is both useful and practical to real trading. I’ll initially try two …

Read more

The Financial Hacker’s Cold Blood Index

This post builds on work done by jcl over at his blog, The Financial Hacker. He proposes the Cold Blood Index as a means of objectively deciding whether to continue trading a system through a drawdown. I was recently looking for a solution like this and actually settled on a modification of jcl’s second example, where an allowance …

Read more

Benchmarking backtest results against random trading part 2

In the first part of this article, I described a procedure for empirically testing whether a trading strategy has predictive power by comparing its performance to the distribution of the performance of a large number of random strategies with similar trade distributions. In this post, I will present the results of the simple example described …

Read more