Trading FX using Autoregressive Models

I’m a big fan of Ernie Chan’s quant trading books: Quantitative Trading, Algorithmic Trading, and Machine Trading. There are some great insights in there, but the thing I like most is the simple but thorough treatment of various edges and the quant tools you might use to research and trade them. Ernie explicitly states that …

Read more

Demystifying the Hurst Exponent – Part 2

What if you had a tool that could help you decide when to apply mean reversion strategies and when to apply momentum to a particular time series? That’s the promise of the Hurst exponent, which helps characterise a time series as mean reverting, trending, or a random walk. For a brief introduction to Hurst, including …

Read more

Hurst Exponent for Algorithmic Trading

This is the first post in a two-part series about the Hurst Exponent. Tom and I worked on this series together and I drew on some of his previously published work as well as other sources like Quantstart.com. UPDATE 03/01/16: Please note that the Python code below has been updated with a more accurate algorithm for …

Read more

Exploring Mean Reversion and Cointegration: Part 2

In the first Mean Reversion and Cointegration post, I explored mean reversion of individual financial time series using techniques such as the Augmented Dickey-Fuller test, the Hurst exponent and the Ornstein-Uhlenbeck equation for a mean reverting stochastic process. I also presented a simple linear mean reversion strategy as a proof of concept. In this post, I’ll …

Read more

Exploring mean reversion and cointegration with Zorro and R: part 1

This series of posts is inspired by several chapters from Ernie Chan’s highly recommended book Algorithmic Trading. The book follows Ernie’s first contribution, Quantitative Trading, and focuses on testing and implementing a number of strategies that exploit measurable market inefficiencies. I’m a big fan of Ernie’s work and have used his material as inspiration for a great deal …

Read more