Pairs Trading Literature Review

This post summarises the key lessons of the academic literature that has been published on pairs trading.  The key themes are highlighted at the end of the page. Pair Trading Literature Review Gatev, Goetzmann, Rouwenhorst – “Pairs Trading: Performance of a Relative Value Arbitrage Strategy” https://papers.ssrn.com/sol3/papers.cfm?abstract_id=141615 This is the first meaningful academic paper on pair …

Read more

Pairs Trading in Zorro

In our previous post, we looked into implementing a Kalman filter in R for calculating the hedge ratio in a pairs trading strategy. You know, light reading… We saw that while R makes it easy to implement a relatively advanced algorithm like the Kalman filter, there are drawbacks to using it as a backtesting tool. …

Read more

Kalman Filter Example:
Pairs Trading in R

This Kalman Filter Example post is the first in a series where we deploy the Kalman Filter in pairs trading. Be sure to follow our progress in Part 2: Pairs Trading in Zorro, and Part 3: Putting It All Together. Anyone who’s tried pairs trading will tell you that real financial series don’t exhibit truly …

Read more

Practical Pairs Trading

Some price series are mean reverting some of the time, but it is also possible to create portfolios which are specifically constructed to have mean-reverting properties. Series that can be combined to create stationary portfolios are called cointegrating, and there are a bunch of statistical tests for this property. We’ll return to these shortly. While …

Read more

Exploring Mean Reversion and Cointegration: Part 2

In the first Mean Reversion and Cointegration post, I explored mean reversion of individual financial time series using techniques such as the Augmented Dickey-Fuller test, the Hurst exponent and the Ornstein-Uhlenbeck equation for a mean reverting stochastic process. I also presented a simple linear mean reversion strategy as a proof of concept. In this post, I’ll …

Read more

Exploring mean reversion and cointegration with Zorro and R: part 1

This series of posts is inspired by several chapters from Ernie Chan’s highly recommended book Algorithmic Trading. The book follows Ernie’s first contribution, Quantitative Trading, and focuses on testing and implementing a number of strategies that exploit measurable market inefficiencies. I’m a big fan of Ernie’s work and have used his material as inspiration for a great deal …

Read more