Back to Basics Part 2 – Succesful Algorithmic Trading

This is the second post in our 3-part Back to Basics series on successful algorithmic trading. You may be interested in checking out the other posts in this series: Part 1: An Introduction to Algorithmic Trading Part 3: Backtesting in Algorithmic Trading There is a lot of information about algorithmic and quantitative trading in the public …

Read more

Intro to Algorithmic Trading – An Algorithmic Trading System

This is the first post in our 3-part Back to Basics series which serve as an introduction to algorithmic trading. You may be interested in checking out the other posts in this series: Part 2: How to Succeed at Algorithmic Trading Part 3: Backtesting in Algorithmic Trading This is the first in a series of posts in …

Read more

Demystifying the Hurst Exponent – Part 2

What if you had a tool that could help you decide when to apply mean reversion strategies and when to apply momentum to a particular time series? That’s the promise of the Hurst exponent, which helps characterise a time series as mean reverting, trending, or a random walk. For a brief introduction to Hurst, including …

Read more

Hurst Exponent for Algorithmic Trading

This is the first post in a two-part series about the Hurst Exponent. Tom and I worked on this series together and I drew on some of his previously published work as well as other sources like Quantstart.com. UPDATE 03/01/16: Please note that the Python code below has been updated with a more accurate algorithm for …

Read more

How to Create a Trading Algorithm: So You Want to Build Your Own Algo Trading System?

This post comes to you from Dr Tom Starke, a good friend of Robot Wealth. Tom is a physicist, quant developer and experienced algo trader with keen interests in machine learning and quantum computing. I am thrilled that Tom is sharing his knowledge and expertise with the Robot Wealth community. Over to you, Tom. Unlike …

Read more

Optimal Data Windows for Training a Machine Learning Model for Financial Prediction

It would be great if machine learning were as simple as just feeding data to an out-of-the box implementation of some learning algorithm, then standing back and admiring the predictive utility of the output. As anyone who has dabbled in this area will confirm, it is never that simple. We have features to engineer and …

Read more

Machine Learning in Algorithmic Trading Systems: Opportunities and Pitfalls

Last night it was my pleasure to present at the Tyro Fintech Hub in Sydney on the topic of using machine learning in algorithmic trading systems. Here you can download the presentation Many thanks to all who attended and particularly for the engaging questions. I thoroughly enjoyed myself! In particular, thanks to Andrien Juric for oraganising …

Read more

Recommended Reading

If there’s one thing I’ve done a lot of over the last few years, reading would be it. I’ve devoted a great deal of time to devouring any material that I thought might give me an edge in my trading – textbooks, academic papers, blog articles, training courses, lecture notes, conference presentations…anything and everything I could get …

Read more

Machine learning for Trading: Part 2

Introduction My first post on using machine learning for financial prediction took an in-depth look at various feature selection methods as a data pre-processing step in the quest to mine financial data for profitable patterns. I looked at various methods to identify predictive features including Maximal Information Coefficient (MIC), Recursive Feature Elimination (RFE), algorithms with …

Read more

My experience dealing with Zorro’s support team

Disclaimer: I am not posting this at the behest of the developers of Zorro, nor do I receive any form of payment or commission for this post. I felt that I should relay this experience because it was an example of customer service that went way above and beyond the call of duty in terms of …

Read more