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Abstract

Mean-Variance Optimization (MVO) as introduced by Markowitz (1952) is often presented as an
elegant but impractical theory. MVO “is an unstable and error-maximizing" procedure (Michaud
1989), and “is nearly always beaten by simple 1/N portfolios” (DeMiguel, 2007). And to quote Ang
(2014): "Mean-variance weights perform horribly... The optimal mean-variance portfolio is a complex
function of estimated means, volatilities, and correlations of asset returns. There are many
parameters to estimate. Optimized mean-variance portfolios can blow up when there are tiny errors
in any of these inputs. .. ".

In our opinion, MVO is a great concept, but previous studies were doomed to fail because they
allowed for short-sales, and applied poorly specified estimation horizons. For example, Ang used a 60
month formation period for estimation of means and variances, while Asness (2012) clearly
demonstrated that prices mean-revert at this time scale, where the best assets in the past often
become the worst assets in the future.

In this paper we apply short lookback periods (maximum of 12 months) to estimate MVO parameters
in order to best harvest the momentum factor. In addition, we will introduce common-sense
constraints, such as long-only portfolio weights, to stabilize the optimization. We also introduce a
public implementation of Markowitz’s Critical Line Algorithm (CLA) programmed in R to handle the
case when the number of assets is much larger than the number of lookback periods.

We call our momentum-based, long-only MVO model Classical Asset Allocation (CAA) and compare
its performance against the simple 1/N equal weighted portfolio using various global multi-asset
universes over a century of data (Jan 1915-Dec 2014). At the risk of spoiling the ending, we
demonstrate that CAA always beats the simple 1/N model by a wide margin.

1. Introduction

Imagine a high-school student, Harry, ignorant of both Markowitz and Lehman Brothers, enrolled in a
class called "Finance for dummies”. At the end of august 2008 his teacher asks him to compute the
so-called Efficient Frontier (return versus volatility) for a long-only mix of SPY (the SP500 ETF) and TLT
(the long-term Treasury ETF) in order to determine the highest returning portfolio with target
volatility (TV) of say, 10%.

Harry uses only monthly (total) return data for both assets and chooses to investigate the optimal
portfolio over just the prior four months. He starts with a simple spreadsheet with only the four
monthly returns (May - Aug 2008) for SPY and TLT, see fig. 1.

! We thank Lennart Appels, Victor DeMiguel, Frank Grossman, Winfried Hallerbach, Jan Willem Keuning,
Clarence Kwan, Steve LeCompte, and Hugo van Putten for inspiration and comments. All errors are ours.



Returns SPY TLT

2008-05-30 1.5% -2.7%
2008-06-30 -8.3% 2.7%
2008-07-31 -0.9% -0.4%
2008-08-29 1.5% 2.7%

Fig. 1 Monthly returns for SPY and TLT (TR, EOM)

For each weight combination (wsp=0, 10, .., 90, 100% for SPY and the complement for wy;), Harry
constructed the monthly portfolio returns, and observed the corresponding average portfolio returns
(re=wspy*repy+wrr*rrr) and volatilities of rp over the 4 months, using simple spreadsheet functions.
See fig. 2. Then he plotted both the average returns and volatilities for all 11 weight combinations as
a so-called Efficient Frontier (EF). See fig. 3.

| Wepy Wqip ~_returnr  volatity v
0% 100% 6.7% 9.1%
10% 90% 4.2% 7.5%
20% 80% 1.7% 6.3%
30% 70% -0.8% 5.8%
40% 60% -3.4% 6.1%
50% 50% -6.0% 7.1%
60% 40% -8.6% 8.5%
70% 30% -11.3% 10.2%
80% 20% -14.1% 12.1%
90% 10% -16.8% 14.1%
100% 0% -19.6% 16.2%

Fig. 2 Return and volatility for a portfolio with various SPY/TLT weights (May-Aug 2008)
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Fig. 3 The efficient frontier for August 29, 2008



As Harry is aiming at a target volatility of 10%, he chooses the weight mix represented by the far right
upper point (red dot) of the EF (with an average return of 6.7% and volatility of 9.1%) for his future
portfolio. This point corresponds to wspy=0% and w1=100%. At the end of September, when Harry
examines the performance of his optimal portfolio, he observes that the portfolio generated positive
returns, and proved resilient to the large crashes experienced by most asset classes in that month. In
fact, if he had continued to follow this process at the end of each subsequent months, he would have
‘whistled past the graveyard’ of the 2008 crash with only TLT in his portfolio.

Let’s fast-forward 12 months from Harry’s original exercise to the end of august 2009. When Harry
runs the same analysis with the same lookback of 4 months (May-Aug 2009) he observes the
following returns and volatilities (see fig. 4 and 5).

Wgpy Wit ~_returnr volat v
0% 100% -0.7% 8.8%
10% 90% 4.5% 7.6%
20% 80% 9.7% 6.7%
30% 70% 14.9% 6.0%
40% 60% 20.0% 5.7%
50% 50% 25.1% 5.9%
60% 40% 30.3% 6.5%
70% 30% 35.3% 7.5%
80% 20% 40.4% 8.6%
90% 10% 45.5% 9.9%
100% 0% 50.5% 11.3%

Fig. 4 Return and volatility for a portfolio with various SPY/TLT weights (May-Aug 2009)
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Fig. 5 The efficient frontier for August 31, 2009




Now with his target volatility of 10%, Harry chooses a portfolio of 90% SPY and 10% TLT (the red dot
in fig 5.). This worked out well as Harry’s portfolio benefitted from the recovery in stocks.

The positive outcomes observed from Harry’s choices hints at a potential opportunity. But what has

Harry done? Actually, Harry simply used Markowitz’s Mean Variance Optimization (MVO), as we will

show later, but with a few constraints. Specifically, he only considers portfolios with positive weights
(i.e. no short-sales), and he uses a short lookback period for parameter estimation. (He also imposes
discrete weights, but this is a topic for another paper).

But wait, wasn't MVO an “unstable and error-maximizing" procedure (Michaud 1989), nearly always
beaten by simple 1/N portfolios (DeMiguel, 2007), in particular with limited data (here only 4
months)? And to quote Ang (2014): "Mean-variance weights perform horribly... The optimal mean-
variance portfolio is a complex function of estimated means, volatilities, and correlations of asset
returns. There are many parameters to estimate. Optimized mean-variance portfolios can blow up
when there are tiny errors in any of these inputs. “

How can we reconcile the above statements with our simple example? It boils down to this: MVO is a
great concept, but previous studies were doomed to fail because they allowed for short-sales, and
applied poorly specified estimation horizons. For example, Ang used a 60-month formation period
for estimation of means and variances, while Asness (2012) clearly demonstrated that prices mean-
revert at this time scale, where the best assets in the past often become the worst assets in the
future. In which case, it is no surprise that MVO fares poorly against simple 1/N investments, as
DeMiguel (2007), Kritzman (2010), Jacobs (2013) and Ang (2014) had shown. Also, Ma (2002) shows
that most of the instability of MVO disappears when we restrict ourselves to long-only.

Since the use of rolling estimation periods implies that rolling estimates should persist over the
subsequent portfolio holding period, we advocate for the use of rolling estimation horizons which
have historically been associated with return persistence. Of course, the phenomenon of return
persistence is most consistent with the momentum factor (see e.g. Faber 2007, Hurst, 2012, Butler
2012, Antonacci 2011 and Asness 2014), which has an optimal portfolio formation period in the
range of 1 to 12 months. The same holds for the persistence of volatilities and correlations (called
“generalized momentum” by Keller 2012).

Fortunately, it is not even necessary to compute asset volatilities correlations, as Harry shows. It’s
possible to approximate the mean-variance optimal portfolio weights by permuting through discrete
combinations of portfolio assets (see fig. 1) to compute the (r, v) of the resulting portfolio (see fig. 2)
and arrive at the efficient frontier (fig. 3). So long as estimation horizons are in the range of 1-12
months or so, momentum will inform the return estimates. The same holds for volatility and
correlation, since combining assets with opposite return patterns (i.e. negative correlation) will result
in a portfolio with lower volatility (i.e. a EF point with lower v).

As Harry demonstrated with his simple spreadsheet, we don’t need to bother about “complex
guadratic optimizations with singular matrices” etc. In fact, as in the example above, the Markowitz
model is very simple. Simply compute the efficient frontier, like Harry did, by computing the
portfolio (r, v) points for various assets weights starting with the asset returns over the last few
months.



2. Calculating the Efficient Frontier: the direct and indirect approach

Mean-Variance Optimization is at the core of Markowitz’s Modern Portfolio Theory (MPT, see
Markowitz, 1952). It is heavily based on the concept of the efficient frontier (EF), as explained in the
above example. Even with a large universe of N assets, we can in theory examine all the possible
long-only weight mixes and compute the average return (r) and volatility (v) of a portfolio over a
certain short lookback period (max. 12 months). The EF is simply the envelope which encompasses all
these (r, v) points. It can be shown to have the typical bullet-like shape like we see above, with the
minimum volatility (MV) solution at the left-size tip of the bullet.

All solutions at the lower part of the EF bullet (below the MV point) are “inefficient” since they are all
dominated (better r, lower v) by portfolios with higher returns at similar risk. So the true “efficient”
frontier (EF) is the upper part of the envelope. Most “quants” focus on the Max Sharpe Ratio (MSR)
portfolio which generates the maximum excess return per unit of volatility. This MSR portfolio
corresponds to a point at the EF tangent to the line through the risk-free rate at the r-axis.
Alternatively, one might be interested in a similar point at the EF tangent to an investor’s utility
function. See e.g. Ang (2014).

We prefer to focus on a constant level of risk, by using annualized target volatility (TV) to find the
optimal point on the EF, and commensurately the right mix of weights. So an aggressive investor
might choose TV=10%, while a more conservative investor might choose TV=5%. This is one of the
great advantages of EF based models, like our Classical Asset Allocation (CAA). But instead of using a
target volatility like we do, you can of course use the same EF (and therefore our CAA model) for a
target return, for the maximization of the Sharpe Ratio, or for the minimization of the variance (or
volatility), as is more common. It all depends on your preferences for risk and return.

How do we compute the EF? As said, it is simply the upper envelop of the (r, v) pairs of all possible
portfolios. The computation of the portfolio return r is always very simple: just weight the various
asset returns with the portfolio weights. There are two methods to compute the portfolio volatility v,
given a set of weights: the direct one, where returns are generated for each asset mix (as Harry did);
and the indirect one, using a covariance matrix. This latter method, which is employed by most
qguadratic optimizers, requires the calculation of the asset covariance matrix C over lookback horizon
T. It can easily be shown? that when C is estimated over the same lookback period, the indirect
method using C is equivalent to the direct method Harry used in his spreadsheet.

When N (the number of assets) is much larger than T (the number of observations), so N>>T, it is
computationally more efficient to use Harry’s method for the portfolio volatility (given a set of
weights); when N <<T it is better to compute the volatility on the basis of the covariance matrix. The

% In matrix notation: If C is the historical NXN covariance matrix for N assets, X the TxN (demeaned) matrix of
returns with T observations (T=12 when using the last 12 months), and w the N-vector of weights of a portfolio,
the variance of that portfolio equals V= W X'Xw/T= w’Cw since C=X’X/T. So the historical variance (and
therefore the volatility v) of the portfolio with weights w can be computed directly by using the historical
variance of the portfolio over the last 12 months (i.e. the variance of Xw) or indirectly by first computing the
covariance matrix C and from there the variance v2=w’Cw/T. This also shows that the variance (and volatility) is
a quadratic function (w’Cw) of the weights w.



results are the same. Notice that with our monthly momentum model (T<=12), Harry’s method is
more efficient for all universes larger than N=12. It is also much simpler to understand, since there is
no covariance matrix involved, just the historical volatility of the portfolio over the last T<=12
months.

Notice that Harry’s method works great even when the number of assets N is much larger than T:
simply generate random assets weights (long-only), compute the portfolios return r and volatility v
over e.g. the last T observations and plot these (r,v) pairs for all generated weights in the EF diagram.
There are no “complex function of estimated means, volatilities, and correlations of asset returns”
and not “many parameters to estimate” (Ang, 2014).

As Harry’s example shows, the computation (using the direct method) of the EF could not be simpler.
And as we will show, the combination of a momentum based tactical approach (T<=12 months
lookback) with a long-only constraint transforms Markowitz’ MVO from an “unstable and error
maximizing procedure” into a robust portfolio formation method.

In addition, we can easily show that both the EF and the corresponding optimal weights for a given
target volatility are invariant for changes of scale (say monthly or annual) in returns and volatilities
while they are also independent of parallel changes in the level of returns for all assets (which simply
moves the EF up or down)’.

So, the optimal weights (corresponding to the point on the EF with a given target volatility) are
simple to understand and often very robust, in particular for long-only portfolios. This can be
demonstrated with Excel. Even with a universe with N=9 assets and a short lookback of T=4 months
as Harry used (so T<<N) you can simply generate several thousand random (non-negative) weights in
Excel to see the EF as the upper envelop of the resulting scatter. Just compute the portfolio (r, v) for
each set of weights, given the 4x9 returns. Now you will also see that there is not much danger that
“Optimized mean-variance portfolios can blow up when there are tiny errors in any of these inputs"
(Ang, 2014). Even when N>>T, the EF (and the optimal weights for a given TV) are very robust under
our assumptions (T<=12 months and long-only). Of course, for different points in time and for
different universes the optimal weights will be different. But as you will see, you will always get the
well-known EF bullet shape.

Actually, this direct EF approach using a spreadsheet with random weights is simple to understand
and rather straightforward, and shows the beauty of “tactical, long-only” MVO. However it can be
computationally very, very slow, especially if N is large and you have to compute the EF (and the
optimal weights for a given TV) for each month walking forward through your backtest. That’'s why
more experienced quants use numerical programming methods.

Analytically, given a target volatility, finding the optimal weight mix is a quadratic optimization
problem under constraints, since the volatility is a quadratic function of the weights (as we explained
in footnote 2). Traditionally, an investor might use a complex quadratic optimizer (with constraints)

*So you will find the same optimal portfolio weights with CAA and a target volatility when using excess returns
instead of normal returns (given a riskfree rate per month). Notice that the MSR solution is, however, not
invariant for these changes unless the level of the riskfree rate is also changed by the same amount as all the
returns. And of course this invariance only holds when all the returns are shifted by the same amount for a
given month. See also par. 4 below.



to find the optimal portfolio solution (like the one corresponding to the target volatility on the EF).
However, many quadratic optimizers have problems with the combination of a short estimation
history (e.g. our 12 months) with many assets (much more than 12). There is, however, a better
alternative: the Critical Line Algorithm (CLA).

3. Markowitz’s Critical Line Algorithm

Markowitz’s Critical Line Algorithm (CLA) is one of the most elegant and fastest algorithms to
calculate the efficient frontier under constraints (see Markowitz 1956 and 1959, Kwan 2007, and
Niedermayer, 2007). It is also effective when the number of assets N is much larger than the number
of observations T (see Nawrocki, 1996), in contrast to many (traditional) quadratic MVI optimizers.

The main idea behind the CLA algorithm is very simple: you start at the upper right side of the EF
with the asset with the highest return, and follow the EF to the left (towards the minimum variance
MV solution) by searching for the best asset to be added (IN) or subtracted (OUT) from the portfolio
one at the time. The EF then consists of many curved lines (called the “critical lines”) connecting the
so called “corner points” where assets change from IN to OUT of the portfolio or vice versa. Over the
critical lines, and between the corner points, the assets included in the portfolio don’t change, only
their weights. The collection of all critical lines (and corner points) builds up the EF, starting from the
upper right point to the MV solution at the far left. Notice that, although the critical lines between
two corner points are linear on weights (much like fig. 2), they are curved (parabolic) in the (r,v)
space of the EF (as shown in fig. 3). In Appendix A we show some examples of the EF produced by
CLA for a given month and universe with the various corner portfolios.

Many traditional MVO optimizers have problems in cases where the NxN covariance matrix is
“singular”®. This singularity of the covariance matrix arises when the number of assets N is larger
than the number of observations T. Our use of tactical (short-term) instead of strategic (long-term)
lookbacks means that T is limited to 12 (with monthly observations), in order to take price
momentum into account. This might present issues for traditional quadratic optimizers, but not for
CLA.

For CLA, as long as the number n (<=N) of assets in the optimal (TV) portfolio at a critical line
segment are less than the number of observations T (so n<T), there exists a unique solution for CLA.
And since there was no open source version of CLA available in R, we (llya) coded it ourselves (see
Appendix B) and made it available to the public, including the code for our CAA model.

Because of the stepwise approach over all the corner points in CLA, only a linear (instead of a
quadratic) problem in a small dimension (n<<N) has to be solved for each corner point, where n is
the number of assets in the portfolio around the corner point. See Kwan (2007) for an illustration of
CLA in Excel, where also the handling of simple constraints on the weights are shown, such as no
short-sales (“non-negative weights”) and investment limits (“weight caps”). > Using CLA, we had no

* A covariance matrix C is singular if the inverse C" does not exist. This is the case when T<N.

> Our simple open-source CLA algorithm in R (implemented by llya Kipnis), is based on this article of Kwan
(2007). Our algorithm is the first open-source implementation of CLA (and CAA) in R as far as we know. More
optimized (open-source) CLA implementations can be found in Niedermayer, 2007 (in Fortran) and Bailey, 2013
(in Python).



trouble handling large universes (e.g. N=39, shown below) notwithstanding our limited number of
(monthly) observations (T=12).

4. Properties of CAA

Our Classical Asset Allocation (CAA) model applies mean-variance optimization over a momentum-
friendly lookback horizon of less than one year. We have already discussed the invariance of the
optimal allocations of the MVO model (and therefore of our CAA model) when we change the scale
of measurements of returns and volatilities from yearly to say monthly. The optimal CAA allocation
for a target volatility is also independent of the absolute /level of returns. Subtracting e.g. the T-Bill
rate in a month from all other assets returns will not change the outcome: the EF is simply moved up
or down when the level of all returns is changed by the same constant and the optimal allocation for
a given target volatility stays unchanged®. Both characteristics (scale and level independence)
contribute to the robustness of CAA. (We should note that the max Sharpe portfolio is not scale
invariant, as the point of tangency of the EF with the Capital Allocation Line will change as the EF
moves higher or lower on the risk-return plane.)

An important property of any asset allocation model is independence of irrelevant alternatives (lIA):
we should have the same optimal portfolio result (in terms of r, v) when linear combinations of its
existing universe assets are added to the portfolio. So when (a copy of) SPY is added to the universe
which already holds SPY, the result should not change.” See also Choueifaty, 2011. With MVO (and
therefore with ditto CLA), any mix of two perfectly correlated assets (with correlation one) leads to
the same EF and the same portfolio result, so any model based on MVI obeys the IIA principle, and so
does our CAA model.

Although we focus with our CAA/CLA implementation on the optimal allocation with a given target
volatility (TV), we might also choose the point on the EF corresponding to the Maximization Sharpe
Ratio (MSR), given a risk free rate, as is often done with MVO. We will call this the MSR variant of the
CAA model. We then arrive at most well-known “smart-beta” allocations as special submodels of this
MSR variant of CAA. These smart beta models include Equal Weight (or 1/N), Minimum Variance
(MV) or minimum volatility, full Risk Parity (full RP, aka ERC) and naive Risk Parity (naive RP), and
Maximum Diversification (MD, see also Choueifaty, 2011). These are all special cases of the general
Maximum Sharpe Ratio (MSR) solution of MVO, given certain assumptions for the returns and the
covariance matrix, and therefore also special cases of CAA/MSR. These submodels are in particular of
interest when we are not willing to specify expected returns in detail. Notice that this is less relevant
when momentum is used, as in our implementation of CAA below. All these smart beta models are
independent of the risk free rate, here assumed to be zero.

As is shown in Hallerbach (2013), the EW solution corresponds to the CAA/MSR solution when we
assume all (expected) returns, volatilities, and correlations to be equal over all assets. The MV
solution corresponds to the CAA/MSR solution when all asset returns ri are assumed to be equal.
Because of the level independence of the returns, running CLA with ri=r for any r will give the MV

® We thank Clarence Kwan for this insight.
7 It is clear that our previous models (see Keller 2012, 2013, 2014) do not possess this desirable property since
adding SPY will simply duplicate SPY if it is part of the optimal portfolio, i.e. give it a double weight.



solution, given the historical covariance matrix. This is also (of course) the left point of our EF, as
computed by CLA. We arrive at the MD solution as special case of CAA/MSR when all asset returns
are proportional to their individual volatilities (MD), implying equal Sharpe ratios over assets. Were
we to replace ri with volatility vi per asset and run CLA/MSR, we would arrive at the MD portfolio.

If, in addition, all cross-correlations are assumed to be the same and equal to the average historical
correlation over all assets, we arrive at full RP (or ERC, see e.g. Maillard 2008), while when assuming
zero correlations (still in addition to constant Sharp ratio’s) we arrive at naive RP. So several smart-
beta models can be found as special cases of CAA/MSR, in particular when we are not willing to use
momentum for returns. For the rest of this paper, however, we will use momentum with CAA as an
added advantage to MVO.

5. Data

Total return index histories for 39 asset (classes) were assembled from several sources. We refer to
Keller (2014b) for details. Returns were drawn from Global Financial Data (GFD), Kenneth French
Database (FF), Barclays, MSCI, Yahoo and other providers of historical data.

The assets (classes) have been divided into three overlapping universes of increasing size:

N=8 universe:

S&P 500

EAFE

Emerging Markets

US Technology Sector

N=16 universe:

Non-Durables
Durables
Manufacturing
Energy
Technology
Telecom
Shops

Health

N=39 universe:

S&P 500

US Small Caps
EAFE

Emerging Markets
Japanese Equities
Non-Durables
Durables
Manufacturing
Energy
Technology
Telecom

Japanese Equities
10-Year Treasuries
T-Bills

High Yield Bonds

Utilities

Other

10-Year Treasuries
30-Year Treasuries
U.S. Municipal Bonds
U.S. Corporate Bonds
U.S High Yield Bonds
T-Bills

FTSE Global ex-US

FTSE Developed Equities

FTSE Emerging Markets
10-Year Treasuries
30-Year Treasuries
U.S. TIPs

U.S. Municipal Bonds
U.S. Corporate Bonds
U.S High Yield Bonds
T-Bills

Int’l Gov't Bonds



e Shops e Japan 10-Year Gov't Bond

e Health e Commodities (GSCI)
e Utilities e Gold

e Other Sector e REITs

e Dow Utilities e Mortgage REITs

e Dow Transports e FX(1x)

e Dow Industrials o FX(2x)

e FTSE US 1000 e Timber

e FTSE US 1500

6. Implementing the Classical Asset Allocation (CAA) model

Now we will specify the implementation of our Classical Asset Allocation (CAA) model in more detail.
Itis, as will be clear by now, based on Markowitz MVO, with a short lookback period (maximum 12
months) and a no-short-sales constraint (long-only). We will use CLA to compute the optimal
allocation on the EF, given a target volatility (TV).

Each month, we estimate the optimal mix of assets weights based on (tactical) information from the
prior 1 to 12 months (to have momentum effects) and use that mix for the next month. As a result,
since our simulations use a century of data, we performed 100 years * 12 rebalances per year = 1200
optimizations. This would have been computationally intractable with larger universes using Harry’s
method in Excel, but with our (not very optimized) CLA code the process took just a few seconds.

For each optimization we take the rolling historical means (returns) and covariances as proxies for
the expected returns and covariances next month. Faber (2010), Butler (2012), Antonacci (2011,
2013) and others suggest that, in fact, the momentum effect is robust over a range of approximately
1 month through 12 months. As a result, we chose to average the momentum observed over 1, 3, 6,
and 12 months in order to span the optimal space and stabilize our estimates. This is also consistent
with the lookback specification for EAA (Keller, 2014b).

For the covariance matrix (i.e. volatilities and correlations) we used the historical covariance matrix
of returns for the trailing twelve months. We also tried using daily instead of monthly data for the
covariance matrix but found no significant advantage®. This is a topic for further research. Notice that
all returns are total returns, i.e. including dividends etc.

As our implementation of mean-variance optimization seeks any optimal set of portfolio weights,
there is the potential for the portfolio to become quite concentrated at times. To reduce this
possibility, we imposed caps (max weights) on all risky assets to enforce greater ex-post
diversification. E.g. with a universal cap of 25% or 50% for all assets, the portfolio should contain at
least resp. four or two assets (i.e. with non-zero weights). This forced diversification also often
improves the ex-post Sharp-ratio (see Appendix A). Our default will be to impose a cap of 25% for all
risky assets and no cap (i.e. a cap of 100%) for all cash-like assets. As a result the CAA model can

8 Daily data might prevent singularity of the covariance matrix (much larger T) but even for our largest universe
(N=39) this was not a problem with our monthly data and CLA. Also clustering (autocorrelation) will be more of
problem with daily data. And for a century of data (incl. rate hikes etc.) we only have monthly data at our
disposal.
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move fully into “safer” assets at turbulent times. We will use both 3-month T-Bills and USGov10y
bond as cash, so both are uncapped in all simulations.

All simulations are performed using monthly data from Jan 1915 through Dec 2014 (with one year
lookback, i.e. from Jan 1914), so over a full century, with monthly rebalancing. We will always use the
EW (or 1/N) allocation as our naive benchmark. We will report per backtest:

- R(CAGR),

- D (maximum Drawdown at monthly observation frequency over a century),
- V(annualized Volatility),

- SR5 (Sharpe Ratio with 5% threshold, so SR5=(R-5%)/V)

- CR5 (Calmar Ratio with 5% threshold, so CR5=(R-5%)/abs(D)),

The target rate of 5% for the Sharpe and Calmar Ratio approximate the average 3m T-Bill rate over
the 100 year test horizon. Notice that the number of free parameters (degrees of freedom) to
influence the backtest performance are minimal, especially when compared with other tactical
models, which often require individual parameter weightings (see Keller 2014b); pre-specified
number of holdings or binary ‘in or out’ thresholds, and; weighting schemes for portfolio assets. In
contrast, our tests involve just four assumptions, as the optimization selects for both number of
assets and weights:

- Longonly, so no short sales

- The estimation periods for monthly returns: equal for 1,3,6, and 12 months, zero else
- The estimation period for the monthly covariances: equal for the last 12 months

- The size and asset compositions of the testing universes: N=8, 16, and 39

We would note that the long-only constraint was imposed to make the implementation practical for
most readers, and to improve the robustness of the solution, see Ma (2002). The momentum
lookback parameters were chosen to span the known effective momentum range and to minimize
the potential for curve-fitting. The covariance estimation horizon was chosen to correspond to our
longest lookback period in order to maximize the density of the covariance matrix. Lastly, our goal in
testing three diverse universes is to avoid data-snooping an optimal universe. Overall, our goal was
to minimize the number of free parameters to broadly minimize the potential for curve-fit results,
and maximize the likelihood of persistent performance out of sample.

To this small list we will add two simple parameters: one max weight (or “cap”) for all ‘risky’ assets,
and the target volatility (TV) to arrive at the offensive or defensive model.

- A maximum weight (“cap”) of 25%
- The Target Volatility: 10% (for offensive) and 5% (for defensive models)

We assume that all assets are “risky” except T-Bills and USGov10yr, both of which are considered as
non-risky or “cash” and are therefore uncapped (or have cap 100%). All other risky assets will have a
default cap of 25% in order to produce palatable portfolios and enforce a minimum amount of
diversification. Notice that a cap of 25% for risky assets implies that we will have at least 4 risky
assets in the portfolio when there is no cash selected and more or less assets when (uncapped) cash
is selected.
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The target volatilities are more model variants than optimization parameters. In addition, we show in
Appendix A that our results (in terms of dominance over the benchmark EW=1/N) are very robust for
other choices of cap=25%. As there are effectively no degrees of freedom left for datasnooping, in
particular when compared to all the free parameters (WR, wV, wC, wS) in our previous models (see
Keller 2012-2014), we will not present an in-sample (IS) versus out-of-sample (OS) comparison as we
did before (see Keller, 2014b). So the whole century (Jan 1915-Dec 2014) will be used for a single
extended simulation.

We will now present the results for the three universes: a small (N=8) global multi-asset universe, a
medium size (N=16) universe with US sectors and bonds, and a large (N=39) global multi-asset
universe.
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7. The small (N=8) universe

Here we will present the results for CAA for the small (N=8) universe for Jan 1914-Dec 2014 (100
years). This universe consists of: SP500, EAFE, EEM, US Tech, Japan Topix, T-Bills, US Gov10y, and US
High Yield. All non-cash assets will have the default 25% cap, while both “cash” assets T-Bills and US
Gov10y are uncapped. The benchmark is the equal weight (EW or 1/N) model of the full portfolio

The numerical results for the offensive (TV=10%) and the defensive model (TV=5%) models are
shown if fig. 6 and 7, resp. in the graphs in fig. 8 and 9.

TV=10% (N=8) CAA EW (1/N)
R= 12.7% 8.7%
V= 8.3% 9.2%
D= -17.3% -49.7%
SR5 (Sharpe) 92.3% 40.1%
CR5 (Calmar) 44.6% 7.4%

Fig. 6 The offensive (TV=10%) results for N=8 (Jan 1915 — Dec 2014

TV=5% (N=8) CAA EW (1/N)
R= 10.5% 8.7%
V= 5.8% 9.2%
D= -10.6% -49.7%
SR5= (Sharpe) 94.5% 40.1%
CR5= (Calmar) 51.5% 7.4%

Fig. 7 The defensive (TV=5%) results for N=8 (Jan 1915 — Dec 2014)

As can be seen in both tables (fig. 6 and 7) and graphs (fig. 8 and 9), the CAA performance is
excellent, in particular taking into account the lack of free parameters, except for the default cap of
25%, which is rather conservative (see Appendix A for more aggressive alternatives like cap=100%).

For both the offensive (TV=10%) as the defensive (TV=5%) model, the returns R, volatilities V, max
drawdown D, Sharpes SR5 and Calmars CR5 are all substantial better than the (EW=1/N) benchmark.
For the offensive model the return R is nearly 50% improved over EW (12.7% vs. 8.7%), while
volatility V is slightly less and in particular maximum drawdown D is reduced by almost two thirds (-
17% instead of -50% for EW). The largest CAA drawdowns were on Black Monday (Oct 1987) and at
the start of WW2 (May 1940), see fig. 9. Even for the defensive model the return R is better than EW
(10.5% vs. 8.7%), while volatility (5.8 vs 9.2%) and drawdowns (-10% vs -50%) are half and resp. one
fifth that of the benchmark.

For return/risk statistics, both models (offensive TV=10 and defensive TV=5%) have Sharpe ratio’s
(SR5) more than double that of the EW, with both optimizations yielding Sharpe ratios above 0.9 vs.
0.4 for EW. The Calmar ratio (CR5) improves more than five times over the benchmark (CR5=0.07 for
EW).

13



:8)

Equity Lines (log scale) 1915 - 2014 (N

=—=CAA TV10 Cap25

=—=CAATV5 Cap25

—EW (1/n)

- rIoCuer
- TToZuer
- 800¢C uer
- S00czuer
- coozuer
- 666T uer
- 966T uer
- €66T uer
- 066T uer
- L86T uer
- 86T uer
- 186T uer
- BLGT Uefr
- SieTuer
- TL6T uer
- 696T uer
- 996T uer
- €96T uer
- 096T uer
- LS6T uer
- PSET uer
- TS6T uer
- 8¥6T uer
- SPeT uer
- ZPeT uer
- 6e6T uer
- 9eeT uer
- eeeT uer
- 0E6T uer
- LTeT uer
- EeT uer
~ TZ6T uer
8I6T uer
- STeT uer

1000000

100000

10000

1000

100

10

-

=8

Fig. 8 Equity lines for N

Drawdown 1915 - 2014 (N=8)

== CAA TV5 Cap25

——CAATV10 Cap25
——EW (1/N)

0.00%

-10.00%

-20.00%

-30.00%

-40.00%

-50.00%

-60.00%

rrozuer
TTozuer
goocuer
soocuer
coocuer
666T uer
966T Uer
€66T uer
0661 Uer
£86T Uer
86T uer
T86T UET
8/6T uer
S/6T Uer
<61 uer
6961 uer
996T uer
€961 uer
096T uer
£LS6T Uer
FSeT uer
TSeT uer
8¥eT uer
S¥eT uer
IreT uer
6€6T Uer
9e6T uer
€E6T uef
ogeT uer
LTeT uer
6T uer
TeeT uer
8T6T Uer
STeT uer

=8

Fig. 9 Drawdowns for N

14



When we examine the portfolio weights in times of crisis, like the Great Depression or the Global
Financial Crisis of 2008 (see Appendix A), you will see that CAA neatly switches to partly or full cash
(here T-Bills and USGov10y) at intuitive times. This is just the result from the momentum effect
(short term lookbacks) and the long-only MVO with no caps on cash.

8. The intermediate sized universe (N=16)

Here we will present the results for CAA for the intermediate size (N=16) universe for Jan 1914-Dec
2014 (100 years). This universe consists of the 10 Fama/French US sectors plus five US bonds: US
Gov10y, US Gov30y, US Muni, US Corp, US High Yield and (3m) T-Bills. So it contains only US stocks
and bonds. For some assets data are missing at the start and/or end of the century (see Keller
2014b). All non-cash assets will have the default 25% cap, while both cash assets (T-Bills and
US10yGov) are uncapped. The benchmark is the equal weight (EW or 1/N) model of the full portfolio.
The results for the offensive (TV=10%) and defensive (TV=5%) models are shown in fig. 10 and 12,
resp. and in fig. 11 and 13.

TV=10% (N=16) CAA EW (1/N)
R= 11.20% 8.70%
V= 9.40% 11.50%
D= 19.70% 64.70%
SR5= 65.60% 32.70%
CR5= 31.30% 5.80%

Fig. 10 The offensive (TV=10%) results for N=16 (Jan 1915 — Dec 2014)

TV=5% (N=16) CAA EW (1/N)
R= 8.70% 8.70%
V= 5.90% 11.50%
D= 12.20% 64.70%
SR5= 62.50% 32.70%
CR5= 30.50% 5.80%

Fig. 11 The defensive (TV=5%) results for N=16 (Jan 1915 — Dec 2014)

As we see from the results for the N=16 universe, the returns R for CAA are less than in the smaller
(N=8) universe. We suspect this is because the US-only universe is much less diversified relative to
the global N=8 universe. The improvements for the N=16 CAA models relative to the benchmark are
to be found in the return/risk statistics SR5 and CR5 which are again 100% and 500% better than EW
for both the offensive as well as the defensive model. The improvement of the maximum drawdown
D is again impressive, which is 1/5 and 1/3 of the EW value for the defensive and offensive model,

resp.
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9. The large universe (N=39)

Here we will present the results for CAA for the large size (N=39) universe for Jan 1914-Dec 2014
(100 years). The universe consists of all the assets of the above two universes (N=8 and N=16) plus
US Small Caps equities, GSCI, Gold, Foreign bonds, US TIPS, US Composite REITs, US Mortgage REITs,
FTSE US 1000/US 1500/Global ex US/Developed/EM, JapanGov10y, Dow Util/Transport/Industry, FX-
1x/2x, and Timber. For some assets data are missing at the start and end of the century (see Keller
2014b). All non-cash assets will have again the default 25% cap, while both cash assets (T-Bills and
US10yGov) are uncapped. The benchmark is the equal weight (EW or 1/N) model of the full portfolio.
The results for the offensive (TV=10%) and the defensive model (TV=5%) models are shown in fig. 14
and 16, resp. and fig. 17 and 18.

| TV=10% (N=39) CAA  EW (1/N)
R= 15.40% 8.80%
V= 10.40% 10.70%
D= 22.80% 63.30%
SR5= 100.20% 35.00%
CR5= 45.80% 5.90%

Fig. 14 The offensive (TV=10%) results for N=39 (Jan 1915 — Dec 2014)

TV=5% (N=39) CAA EW (1/N) |
R= 11.80% 8.80%
V= 7.30% 10.70%
D= 15.60% 63.30%
SR5= 92.40% 35.00%
CR5= 43.30% 5.90%

Fig. 15 The defensive (TV=5%) results for N=39 (Jan 1915 - Dec 2014)

These results clearly demonstrate that MVO using CLA is robust to large universes where N>>T (such
as N=16 and N=39 where T<=12). The results are impressive, in particular the return R for the
offensive model, which is nearly double that of the EW benchmark. Its Sharpe ratio SR5 is above 1
(nearly three times the SR5 of the EW), while the Calmar ratio (CR5=46%) is more than seven times
that of the EW benchmark. Its drawdown D=23% is substantial, although still nearly three times
smaller than EW. Similar observations hold for the defensive model with lower V and D and nearly as
good SR5 and CR5 as the offensive model has. Both models clearly beat EW in all respects.
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10. Conclusions

When the first author submitted a paper (see Keller 2014a) to a great American Investment contest,
he received the following reply from the chairman of the jury in response to his question about why
he was not selected to place in the Top 3: “My guess is that some were turned off by the Markowitz
affirmation”. So it seems Markowitz’ MPT is not in vogue any more in the investment industry. This is
confirmed by the quotes (referred to above) made in the recent seminal book of Ang (2014).

In the present quant “blog scene”, Markowitz is also not very popular, as witnessed by this recent
article from Wesley Gray (a very well-respected quant, also by us!):

“Although Markowitz did win a Nobel Prize, and this was partly based on his elegant mathematical
solution to identifying mean-variance efficient portfolios, a funny thing happened when his ideas were
applied in the real world: mean-variance performed poorly. The fact that a Nobel-Prize winning idea
translated into a no-value-add-situation for investors is something to keep in mind when considering
any optimization method for asset allocation ...complexity does not equal value!”
This is the general theme in the investment industry: MVO is too complex, unstable, and unreliable.
We disagree. It is the industry’s implementation of MVO (with long multi-year lookbacks and noisy

short sales), not the MVO theory, which is incorrect.

In particular, using the last 60 month (5 year) mean return to forecast future returns runs directly
counter to the theory of long-term price reversals. See also Asness (2012, 2015) who emphasized
demonstrated that negative momentum over a 5 years lookback as a good proxy for value! And
when our implementation works with even a 4 month estimate of the covariance matrix (as our
Harry had shown) the culprit is probably not the covariance matrix but the combination of the wrong
return prediction in combination with allowance for short sales. When we simply restrict our model
to long-only and use momentum to estimate returns, we easily beat 1/N in all cases considered by a
large margin.

One of the most charming characteristics (in our opinion) of combining MVO with momentum and
long-only constraints is the nearly complete absence of degrees of freedom for datasnooping. We
played with simple caps for reasons of practical implementation, but as we show in Appendix A, the
dominance of our Classical Asset Allocation (CAA) model over 1/N is independent of the cap chosen,
including no caps at all (unconstrained long-only). Our lookback horizon was deliberately chosen to
span the known effective momentum space rather than optimizing on a specific lookback value. The
same holds for the simple historical covariance matrix based on the past 12 months.

Our unpublished analyses (Butler, 2015) indicate that perturbing these parameters would cause no
difference to our conclusions. So in terms of datasnooping, our results are robust. And because we
tested over a century of data, these results also hold when rates are rising (as many expect after QE),
as witnessed by our CAA results in the thirties (with zero yields) and during the seventies.

As suggestions for further research we plan to repeat our exercise with daily data and even allow for
short sales and transactions costs’. Butler (2015, forthcoming) performs a Monte-Carlo style analysis,

° The yearly turnover of CAA for the various universes (with TV=10%/5%, cap=25%) were roughly between 4
(for N=8) and 7 (N=39). So, with (today's) transaction costs of less than 0.1% (and sometimes even zero), the
annual return R (CAGR) for e.g. N=39 will in worst case be 0.7% lower after taking into account these
transaction costs. Of course, in the early years of the century these transaction cost were much higher than
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including random universes and random rebalance dates in order to observe a distribution of results
for robust statistical tests. From this study we also conclude that as long as Markowitz and
momentum are combined, MVO beats 1/N handily with very strong statistical significance, and also
beats more robust return-agnostic optimizations like Equal Risk Contribution.

0.1%. With e.g. a difference of 14.4-8.8=5.6% in R (for the N=39/TV=10/cap25% results) this implies that the
average transaction costs over a century can be as high as 0.8% (= 5.6/7) before CAA loses on R from 1/N.
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Appendix A. Some robustness tests

To make sure we did not pick the best value for the default cap (25%), we present in fig. 18 the
results for the three universes for several other cap values, from 10%, 17%, 25% (default), 33%, 40%,
50% to 100% (=no caps), for both the offensive (TV=10%) and defensive (TV=5%) models. A
cap=25% implies that there should be at least 4 assets in the portfolio assuming that there is no cash
(uncapped) selected. This is relatively high for an N=8 universe (50%), so in practice one might
choose a slightly higher cap, like cap33 or cap25.n For the N=39 universe the default cap of 25%
seems a better fit. The choice of cap is a function of investor preferences for minimum thresholds of
diversification and it is not presented for parameter optimization.

Below, we highlight in grey the best results in terms of caps. As can be seen from both tables, our
default cap of 25% is clearly not always optimal in terms of return. Notice that we get the best
performance (R=16.3%) with N=39, TV=10% and caps=50% with slightly better SR5 and CR5 than with
the default cap=25% (R=15.4%). The worst performance (R=8.1%) for N=8, TV=5 and cap=10%, is
slightly less than EW (8.7%) but still with much better return/risk (SR5 nearly doubled and CR5 is five
times EW) and with the best drawdown (D=10.7%) overall. The worst drawdown overall (D=23.2%)
for N=16, TV5, capl10% is still nearly three times better than EW (64.7%), while the Sharpe ratio
(SR5=60.7%) is still nearly double that of EW (32.7%). The worst Calmar ratio (CR5=27.7% for N=16,
TV10, cap 10%) is still nearly five times better than EW. So CAA is much better than EW, independent
of the choice of cap (and the choice of universe and TV).

Notice also that cap level impacts realized ex post volatility V relative to target volatility (TV). In
general, (but with small exceptions), higher caps result in higher ex post volatility V. For N=8 and
TV=10% the best corresponding (to TV) is cap 50 % (with a V=10.1%); for N=16 it is cap 40%
(V=10.1%); for N=39 it is cap 17% (V=9.8%). These results are intuitive, as smaller caps on a larger
universe will still allow for highly concentrated portfolios relative to the size of the overall universe.

In fig. 19 we show the optimal weights for N=8, TV=10%, Cap=25% for the years 2007-2009. Notice
how the optimal allocation switches to cash as a result of momentum and changes in covariances
long before the Lehman crisis (in Sep 2008). Also note how the cap of 25% leads to nearly EW like
(but not 1/N) optimal portfolios in 2007, which reduces turnover.

Lastly (in fig. 20) we show four examples of EFs, where the corresponding “degeneration” of the
number of corner points (from 7 in 2007 to only two in Sep 2008) becomes clear. The explanation is
simple: with so many assets with negative returns before and during the crisis in 2008, only a limited
number of assets with positive returns (mostly bonds, but also some Tech and EEM before Jun 2008,
see fig. 19) can be included, which limits the number of corner points.
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N8 TV10 Cap10 Capl7 Cap25 Cap33 Cap40 Cap50 Capl00% EW (1/N)

R= 8.80% 11.00% 12.70% 13.60% 14.10% 14.60% 15.20% 8.70%
V= 5.30% 6.90% 8.30% 9.20% 9.60% 10.10% 11.30% 9.20%

= -11.30% -15.80% -17.30% -20.50% -21.80% -21.80% -21.80% -49.70%
SR5= 71.80% 86.20% 92.30% 93.50% 94.20% 94.90% 90.20% 40.10%
CR5= 33.50% 37.70% 44.60% 42.00% 41.60% 44.10% 46.80% 7.40%
N8 TV5 Cap10 Cap17 Cap25 Cap33 Cap40 Cap50 Capl100% EW (1/N)
R= 8.30% 9.60% 10.50% 10.80% 10.90% 11.10% 11.00% 8.70%
V= 4.40% 5.20% 5.80% 6.10% 6.30% 6.50% 6.70% 9.20%
D= -8.10%  -10.10%  -10.60%  -10.60%  -10.70%  -13.00%  -17.20%  -49.70%
SR5= 76.00% 88.70% 94.50% 94.80% 94.40% 95.10% 89.60% 40.10%
CR5= 40.70% 45.80% 51.50% 54.70% 55.70% 47.20% 35.10% 7.40%

N16 TV10 Cap10 Capl7 Cap25 Cap33 Cap40 Cap50 Capl100% EW (1/N)

R= 9.80% 10.60% 11.20% 11.50% 11.70% 12.00% 12.10% 8.70%
V= 7.70% 8.70% 9.40% 9.80% 10.10% 10.40% 10.80% 11.50%
D= -17.20%  -1890%  -19.70%  -19.30%  -19.50%  -21.80%  -23.20%  -64.70%
SR5= 61.80% 64.20% 65.60% 66.40% 67.20% 67.10% 65.20% 32.70%
CR5= 27.70% 29.60% 31.30% 33.70% 34.60% 31.90% 30.50% 5.80%
N16 TV5 Cap10 Cap17 Cap25 Cap33 Cap40 Cap50 Capl00% EW (1/N)
R= 8.10% 8.60% 8.70% 8.70% 8.80% 8.80% 8.80% 8.70%
V= 5.20% 5.60% 5.90% 6.10% 6.20% 6.20% 6.30% 11.50%
D= 10.70% 11.90% 12.20% 11.30% 11.40% 12.00% 12.60% 64.70%
SR5= 60.70% 63.90% 62.50% 61.60% 60.90% 61.30% 60.10% 32.70%
CR5= 29.30% 30.40% 30.50% 33.00% 32.80% 31.60% 29.90% 5.80%

N39 TV10 Cap10 Cap50 Cap100% EW (1/N)

R= 13.00% 14.70% 15.40% 16.00% 16.20% 16.30% 15.70% 8.80%
V= 8.80% 9.80% 10.40% 11.00% 11.40% 11.90% 12.90% 10.70%
D= -18.70% -21.40% -22.80% -23.60% -23.50% -23.10% -22.70% -63.30%
SR5= 90.40% 98.90%  100.20%  100.10% 98.20% 95.50% 83.60% 35.00%
CR5= 42.70% 45.00% 45.80% 46.70% 47.70% 49.10% 47.40% 5.90%
N39 TV5 Cap10 Capl7 Cap25 Cap33 Cap40 Cap50 Capl00% EW (1/N)
R= 10.50% 11.40% 11.80% 12.00% 12.10% 12.10% 11.90% 8.80%
V= 6.20% 6.90% 7.30% 7.60% 7.80% 8.00% 8.10% 10.70%
D= -11.70% -15.90% -15.60% -15.30% -15.30% -15.30% -16.10% -63.30%
SR5= 88.70% 93.30% 92.40% 92.60% 91.20% 89.00% 85.50% 35.00%
CR5= 47.40% 40.50% 43.30% 46.10% 46.40% 46.40% 43.30% 5.90%

Fig. 18 Results various caps for N=8, 16, 39 and TV=10, 5% (Jan 1915 — Dec 2014)
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N8 T10 Bill  US10yr  HYield SP500 Tech EAFE JapTopix EEM
2007-01-31 3%  25%  22%  25% 25%
2007-02-28 25% ‘ 25% 25%  25%
2007-03-31 25%  25% 25% 25%
2007-04-30 25%  25%  25% 25%
2007-05-31 0%  25%  25%  25% 25%
2007-06-30 25%  25%  25% 25%
2007-07-31 25%  25%  25% 25%
2007-08-31 25%  25%  25% 25%
2007-09-30 25%  25%  25% 25%
2007-10-31 25%  25%  25% 25%
2007-11-30 25%

2007-12-31 25%
2008-01-31
2008-02-29
2008-03-31
2008-04-30
2008-05-31
2008-06-30
2008-07-31
2008-08-31
2008-09-30
2008-10-31
2008-11-30 8%
2008-12-31  12%
2009-01-31 22%
2009-02-28 21%
2009-03-31 22%
2009-04-30
2009-05-31 51%  12%  25%
2009-06-30 | 59% | 0%  25%
2009-07-31 46%  18%  25%
2009-08-31 20%  39%  25%
2009-09-30 34%  31%  25%
2009-10-31 30%  32%  25%

2009-11-30 40% 25%
2009-12-31 32% 25%

Fig. 19 Weights for N=8 and TV=10% (Jan 2007 — Dec 2009)
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Fig. 20 Four Efficient Frontiers for N=8 and TV=10% (Oct 2007, and May, Jun, Sep 2008)
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Appendix B. CLA code (in R) by Ilya Kipnis (QuantStratTradeR'®)

require(quantmod)
require(PerformanceAnalytics)
require(TTR)

CCLA <- function(covMat, retForecast, maxlter = 1000,
verbose = FALSE, scale = 252,
weightLimit = .7, volThresh = .1) {
if(length(retForecast) > length(unique(retForecast))) {
sequentialNoise <- seq(1:length(retForecast)) * 1e-12
retForecast <- retForecast + sequentialNoise

}

#initialize original out/in/up status
if(length(weightLimit) == 1) {
weightLimit <- rep(weightLimit, ncol(covMat))
}
rankForecast <- length(retForecast) - rank(retForecast) + 1
remainingWeight <- 1 #have 100% of weight to allocate
upStatus <- inStatus <- rep(0, ncol(covMat))
i<-1
while(remainingWeight > 0) {
securityLimit <- weightLimit[rankForecast == i]
if(securityLimit < remainingWeight) {
upStatus[rankForecast == i] <- 1 #if we can't invest all remaining weight into the security
remainingWeight <- remainingWeight - securityLimit
}else {
inStatus[rankForecast ==i] <- 1
remainingWeight <- 0
}
i<-i+1

}

#initial matrices (W, H, K, identity, negative identity)
covMat <- as.matrix(covMat)

retForecast <- as.numeric(retForecast)

init_W <- cbind(2*covMat, rep(-1, ncol(covMat)))
init_W <- rbind(init_W, c(rep(1, ncol(covMat)), 0))
H_vec <- c(rep(0, ncol(covMat)), 1)

K_vec <- c(retForecast, 0)

negldentity <- -1*diag(ncol(init_W))

identity <- diag(ncol(init_W))

matrixDim <- nrow(init_W)

weightLimMat <- matrix(rep(weightLimit, matrixDim), ncol=ncol(covMat), byrow=TRUE)

#Hout status is simply what isn't in or up
outStatus <- 1 - inStatus - upStatus

1% hitps://quantstrattrader.wordpress.com/
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#initialize expected volatility/count/turning points data structure
expVol <- Inf

lambda <- 100

count<-0

turningPoints <- list()

while(lambda > 0 & count < maxlter) {

#old lambda and old expected volatility for use with numerical algorithms
oldLambda <- lambda
oldVol <- expVol

count<-count+1

#compute W, A, B

inMat <- matrix(rep(c(inStatus, 1), matrixDim), nrow = matrixDim, byrow = TRUE)
upMat <- matrix(rep(c(upStatus, 0), matrixDim), nrow = matrixDim, byrow = TRUE)
outMat <- matrix(rep(c(outStatus, 0), matrixDim), nrow = matrixDim, byrow = TRUE)

W <- inMat * init_W + upMat * identity + outMat * negldentity

inv_W <- solve(W)

modified_H <- H_vec - rowSums(weightLimMat* upMat[,-matrixDim] * init_W/[,-matrixDim])
A_vec <- inv_W %*% modified_H

B_vec<-inv_W %*% K_vec

#remove the last elements from A and B vectors
truncA <- A_vec[-length(A_vec)]
truncB <- B_vec[-length(B_vec)]

#compute in Ratio (aka Ratio(1) in Kwan.xls)
inRatio <- rep(0, ncol(covMat))
inRatio[truncB > 0] <- -truncA[truncB > 0]/truncB[truncB > 0]

#compute up Ratio (aka Ratio(2) in Kwan.xls)
upRatio <- rep(0, ncol(covMat))
upRatiolndices <- which(inStatus==TRUE & truncB < 0)
if(length(upRatiolndices) > 0) {
upRatio[upRatiolndices] <- (weightLimit[upRatiolndices] - truncA[upRatiolndices]) /
truncB[upRatiolndices]

}

#find lambda -- max of up and in ratios
maxInRatio <- max(inRatio)

maxUpRatio <- max(upRatio)

lambda <- max(maxInRatio, maxUpRatio)

#compute new weights
wts <- inStatus*(truncA + truncB * lambda) + upStatus * weightLimit + outStatus * 0

H#compute expected return and new expected volatility
expRet <- t(retForecast) %*% wts
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expVol <- sqrt(wts %*% covMat %*% wts) * sqrt(scale)

#create turning point data row and append it to turning points

turningPoint <- cbind(count, expRet, lambda, expVol, t(wts))

colnames(turningPoint) <- c("CP", "Exp. Ret.", "Lambda", "Exp. Vol.", colnames(covMat))
turningPoints[[count]] <- turningPoint

#binary search for volatility threshold -- if the first iteration is lower than the threshold,
#then immediately return, otherwise perform the binary search until convergence of lambda
if(oldVol == Inf & expVol < volThresh) {

}

turningPoints <- do.call(rbind, turningPoints)
threshWts <- tail(turningPoints, 1)
return(list(turningPoints, threshWts))

else if(oldVol > volThresh & expVol < volThresh) {
upLambda <- oldLambda

dnlLambda <- lambda

meanLambda <- (upLambda + dnLambda)/2
while(upLambda - dnLambda > .00001) {

#compute mean lambda and recompute weights, expected return, and expected vol
meanLambda <- (upLambda + dnLambda)/2

wts <- inStatus*(truncA + truncB * meanLambda) + upStatus * weightLimit + outStatus * 0
expRet <- t(retForecast) %*% wts

expVol <- sgrt(wts %*% covMat %*% wts) * sqrt(scale)

#if new expected vol is less than threshold, mean becomes lower bound
#otherwise, it becomes the upper bound, and loop repeats
if(expVol < volThresh) {
dnLambda <- meanLambda
}else {
uplLambda <- meanLambda
1
1

#once the binary search completes, return those weights, and the corner points

#computed until the binary search. The corner points aren't used anywhere, but they're there.
threshWts <- cbind(count, expRet, meanLambda, expVol, t(wts))

colnames(turningPoint) <- colnames(threshWts) <- c("CP", "Exp. Ret.", "Lambda", "Exp. Vol.",

colnames(covMat))

}

turningPoints[[count]] <- turningPoint
turningPoints <- do.call(rbind, turningPoints)
return(list(turningPoints, threshWis))

#this is only run for the corner points during which binary search doesn't take place
#change status of security that has new lambda
if(maxInRatio > maxUpRatio) {

}

inStatus[inRatio == maxInRatio] <- 1 - inStatus[inRatio == maxInRatio]
upStatus[inRatio == maxInRatio] <- 0

else {

upStatus[upRatio == maxUpRatio] <- 1 - upStatus[upRatio == maxUpRatio]
inStatus[upRatio == maxUpRatio] <- 0
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}

outStatus <- 1 - inStatus - upStatus

}

#we only get here if the volatility threshold isn't reached
#can actually happen if set sufficiently low
turningPoints <- do.call(rbind, turningPoints)

threshWts <- tail(turningPoints, 1)

return(list(turningPoints, threshWts))
}

sumlsNa <- function(column) {
return(sum(is.na(column)))

}

returnForecast <- function(prices) {
forecast <- (ROC(prices, n = 1, type="discrete") + ROC(prices, n = 3, type="discrete") +
ROC(prices, n = 6, type="discrete") + ROC(prices, n = 12, type="discrete"))/22
forecast <- as.numeric(tail(forecast, 1))
return(forecast)

}

kellerCLAfun <- function(prices, returnWeights = FALSE,
weightLimit, volThresh, uncappedAssets) {

if(sum(colnames(prices) %in% uncappedAssets) == 0) {
stop("No assets are uncapped.")

}

#initialize data structure to contain our weights

weights <- list()

#compute returns

returns <- Return.calculate(prices)

returns[1,] <- 0 #impute first month with zeroes

ep <- endpoints(returns, on = "months")

for(i in 2:(length(ep) - 12)) {
priceSubset <- prices[ep[i]:ep[i+12]] #subset prices
retSubset <- returns[ep[il:ep[i+12]] #subset returns
assetNAs <- apply(retSubset, 2, sumIsNa)
zeroNAs <- which(assetNAs == 0)
priceSubset <- priceSubset[, zeroNAs]
retSubset <- retSubset[, zeroNAs]

#remove perfectly correlated assets
retCors <- cor(retSubset)
diag(retCors) <- NA
corMax <- round(apply(retCors, 2, max, na.rm = TRUE), 7)
while(max(corMax) == 1) {
ones <- which(corMax == 1)
valid <- which(!names(corMax) %in% uncappedAssets)
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toRemove <- intersect(ones, valid)

toRemove <- max(valid)

retSubset <- retSubset[, -toRemove]

priceSubset <- priceSubset[, -toRemove]

retCors <- cor(retSubset)

diag(retCors) <- NA

corMax <- round(apply(retCors, 2, max, na.rm = TRUE), 7)

}
covMat <- cov(retSubset) #compute covariance matrix

#Dr. Keller's return forecast

retForecast <- returnForecast(priceSubset)

uncappedindex <- which(colnames(covMat) %in% uncappedAssets)
weightLims <- rep(weightLimit, ncol(covMat))
weightLims[uncappedindex] <- 1

cla <- CCLA(covMat = covMat, retForecast = retForecast, scale = 12,
weightLimit = weightLims, volThresh = volThresh) #run CCLA algorithm

CPs <- cla[[1]] #corner points
wts <- cla[[2]] #binary search volatility targeting -- change this line and the next
#if using max sharpe ratio golden search
wts <- wts[, 5:ncol(wts)] #from 5th column to the end
if(length(wts) == 1) {

names(wts) <- colnames(covMat)

}

zeroes <- rep(0, ncol(prices) - length(wts))

names(zeroes) <- colnames(prices)[!colnames(prices) %in% names(wts)]
wts <- ¢(wts, zeroes)

wts <- wts[colnames(prices)]

#append to weights
wts <- xts(t(wts), order.by=tail(index(retSubset), 1))
weights[[i]] <- wts

}

weights <- do.call(rbind, weights)

#compute strategy returns
stratRets <- Return.portfolio(returns, weights = weights)
if(returnWeights) {
return(list(weights, stratRets))
}

return(stratRets)

}

kellerCLAcomparison <- function(prices, weightLimits, volThresh,
uncappedAssets) {
#initialize configurations
configs <- list()
for(i in 1:length(weightLimits)) {



weightLimit <- weightLimits[i]

#run CLA function loop -- because of differing numbers of securities,

#it'll take care of weight limits inside new function

config <- kellerCLAfun(prices = prices, returnWeights = FALSE,
weightLimit = weightLimit, volThresh = volThresh,
uncappedAssets = uncappedAssets)

#create appropriate column name for configuration
colnames(config) <- paste("thresh", volThresh*100, "wLim", round(weightLimits[i], 2)*100,
Sep=“_“)

#append to configurations
configs[[i]] <- config

}

#combine configurations
configs <- do.call(cbind, configs)
return(configs)

}

#plot efficient frontier

claEfPlot <- function(prices, weightLimit = .5, uncappedAssets = uncappedAssets) {
returns <- Return.calculate(prices)
returns[1,] <-0
ep <- endpoints(prices, on = "months")

for(i in 2:(length(ep)-12)) {
priceSubset <- prices[ep[i]:ep[i+12]]
retSubset <- returns[ep[i]:ep[i+12]]
assetNAs <- apply(retSubset, 2, sumlIsNa)
zeroNAs <- which(assetNAs == 0)
priceSubset <- priceSubset[, zeroNAs]
retSubset <- retSubset[, zeroNAs]

retCors <- cor(retSubset)
diag(retCors) <- NA
corMax <- round(apply(retCors, 2, max, na.rm = TRUE), 7)
while(max(corMax) == 1) {
ones <- which(corMax == 1)
valid <- which(!names(corMax) %in% uncappedAssets)
toRemove <- intersect(ones, valid)
toRemove <- max(valid)
retSubset <- retSubset[, -toRemove]
priceSubset <- priceSubset[, -toRemove]
retCors <- cor(retSubset)
diag(retCors) <- NA
corMax <- round(apply(retCors, 2, max, na.rm = TRUE), 7)

}

retForecast <- returnForecast(priceSubset)
covMat <- cov(retSubset)



}

}

uncappedIndex <- which(colnames(covMat) %in% uncappedAssets)
weightLims <- rep(weightLimit, ncol(covMat))
weightLims[uncappedindex] <- 1

cla <- CCLA(covMat = covMat, retForecast = retForecast, scale = 12,
weightLimit = weightLims, volThresh = 0) #run CCLA algorithm
if(!"ef" %in% dir()) {
dir.create("ef")
}
jpeg(filename = paste0("ef/",as.character(tail(index(priceSubset), 1))," ", "Frontier.jpeg"))
plot(cla[[1]][, 2]*sqrt(12)~cla[[1]][,4], xlab="Expected Volatility", ylab="Expected Return",
main = paste("CCLA Efficient Frontier, Date =", as.character(tail(index(priceSubset), 1)),
"\nWeight Limit =", weightLimit))
dev.off()
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